IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021

3183

Feature-Aware Uniform Tessellations on Video
Manifold for Content-Sensitive Supervoxels

Ran Yi", Zipeng Ye

, Wang Zhao", Minjing Yu, Yu-Kun Lai

, and Yong-Jin Liu*, Senior Member, IEEE

Abstract—Over-segmenting a video into supervoxels has strong potential to reduce the complexity of downstream computer vision
applications. Content-sensitive supervoxels (CSSs) are typically smaller in content-dense regions (i.e., with high variation of
appearance and/or motion) and larger in content-sparse regions. In this paper, we propose to compute feature-aware CSSs (FCSSs)
that are regularly shaped 3D primitive volumes well aligned with local object/region/motion boundaries in video. To compute FCSSs, we
map a video to a 3D manifold embedded in a combined color and spatiotemporal space, in which the volume elements of video
manifold give a good measure of the video content density. Then any uniform tessellation on video manifold can induce CSS in the
video. Our idea is that among all possible uniform tessellations on the video manifold, FCSS finds one whose cell boundaries well align
with local video boundaries. To achieve this goal, we propose a novel restricted centroidal Voronoi tessellation method that
simultaneously minimizes the tessellation energy (leading to uniform cells in the tessellation) and maximizes the average boundary
distance (leading to good local feature alignment). Theoretically our method has an optimal competitive ratio O(1), and its time and
space complexities are O(NK) and O(N + K) for computing K supervoxels in an N-voxel video. We also present a simple extension of
FCSS to streaming FCSS for processing long videos that cannot be loaded into main memory at once. We evaluate FCSS, streaming
FCSS and ten representative supervoxel methods on four video datasets and two novel video applications. The results show that our
method simultaneously achieves state-of-the-art performance with respect to various evaluation criteria.

Index Terms—Supervoxels, video over-segmentation, video manifold, low-level video features, centroidal Voronoi tessellation

1 INTRODUCTION

SUPERVOXELS are perceptually meaningful atomic regions
obtained by grouping similar voxels (i.e., exhibiting
coherence in both appearance and motion) in the spatiotem-
poral domain. As a special over-segmentation of videos,
supervoxels well preserve the structural content while still
providing sufficient levels of detail. Therefore, supervoxels
can greatly reduce the computational complexity and have
been widely used as a preprocessing step in many computer
vision applications, such as video segmentation [13], [19],
[45], propagation of foreground object segmentation [14],
spatiotemporal object detection [27], spatiotemporal closure
in videos [17], action segmentation and recognition [15], [25],
and many others.

Many methods have been proposed for computing super-
voxels, including energy minimization by graph cut [38],
non-parametric feature-space analysis [28], graph-based
merging [9], [13], [42], contour-evolving optimization [17],
[21], [31], optimization of normalized cuts [7], [33], genera-
tive probabilistic framework [5] and hybrid clustering [30],

e R.Yi, Z. Ye, W. Zhao, and Y -]. Liu are with the BNRist, MOE-Key Labora-
tory of Pervasive Computing, Department of Computer Science and Technol-
ogy, Tsinghua University, Beijing 100084, China. E-mail: {yr16, yezpl7,
zhao-w19)@mails.tsinghua.edu.cn, liuyongjin@tsinghua.edu.cn.

o M. Yuiswith the College of Intelligence and Computing, Tianjin University,
Tianjin 300072, China. E-mail: minjingyu@tju.edu.cn.

o Y.-K. Laiis with the School of Computer Science and Informatics, Cardiff Uni-
versity, CF10 3AT Cardiff, United Kingdom. E-mail: LaiY4@cardiff.ac.uk.

Manuscript received 22 May 2019; revised 22 Jan. 2020; accepted 5 Mar.
2020. Date of publication 10 Mar. 2020; date of current version 4 Aug. 2021.
(Corresponding authors: Yong-Jin Liu and Minjing Yu.)

Recommended for acceptance by S. Wang.

Digital Object Identifier no. 10.1109/TPAMI.2020.2979714

[43], etc. These methods can be classified according to differ-
ent representation formats: (1) temporal superpixels [4], [5],
[17], [21], [30], [31], [39]: supervoxels are represented in each
frame and their labels are temporally consistent in adjacent
frames, and (2) supervoxels [7], [9], [13], [28], [33], [38], [42],
[43]: they are 3D primitive volumes whose union forms the
video volume. Note that these two representations can be
transferred to each other. For example, temporal superpixels
can be stacked up frame-by-frame to reconstruct supervox-
els. However, individual supevoxels obtained in this way
may have disconnected components or have a complex
topology type (i.e., having a non-zero genus). On the other
hand, a supervoxel can be sliced by related frames to decom-
pose it into temporal superpixels, however, a superpixel
sliced in a frame may also consist of disjoint components or
have a complex topology type.

Depending on the size of video data, supervoxel meth-
ods can also be classified into off-line and streaming methods.
Off-line methods require the video to be short enough such
that all video data can be loaded into the memory. On the
other hand, streaming methods do not have such a limita-
tion on the video length, i.e., video data is accessed sequen-
tially in blocks and each time only a block is needed to feed
into the memory. In a recent survey [41], seven representa-
tive supervoxel methods are selected, including five off-
line [7], [9], [10], [13], [28] and two streaming [5], [42] meth-
ods, to represent the state of the art.

To measure the quality of supervoxels, the following prin-
ciples have been considered in previous work [13], [22], [24],
[38], [41], [44]: (1) Feature preservation: supervoxel boundaries
align well with object/region/motion boundaries in a video;

0162-8828 © 2020 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 27,2023 at 10:52:42 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1858-3358
https://orcid.org/0000-0003-1858-3358
https://orcid.org/0000-0003-1858-3358
https://orcid.org/0000-0003-1858-3358
https://orcid.org/0000-0003-1858-3358
https://orcid.org/0000-0002-4322-7550
https://orcid.org/0000-0002-4322-7550
https://orcid.org/0000-0002-4322-7550
https://orcid.org/0000-0002-4322-7550
https://orcid.org/0000-0002-4322-7550
https://orcid.org/0000-0001-8925-8574
https://orcid.org/0000-0001-8925-8574
https://orcid.org/0000-0001-8925-8574
https://orcid.org/0000-0001-8925-8574
https://orcid.org/0000-0001-8925-8574
https://orcid.org/0000-0002-2094-5680
https://orcid.org/0000-0002-2094-5680
https://orcid.org/0000-0002-2094-5680
https://orcid.org/0000-0002-2094-5680
https://orcid.org/0000-0002-2094-5680
https://orcid.org/0000-0001-5774-1916
https://orcid.org/0000-0001-5774-1916
https://orcid.org/0000-0001-5774-1916
https://orcid.org/0000-0001-5774-1916
https://orcid.org/0000-0001-5774-1916
mailto:yr16@mails.tsinghua.edu.cn
mailto:yezp17@mails.tsinghua.edu.cn
mailto:zhao-w19@mails.tsinghua.edu.cn
mailto:liuyongjin@tsinghua.edu.cn
mailto:minjingyu@tju.edu.cn
mailto:LaiY4@cardiff.ac.uk

3184

.

N-
g
s

=

Frame 61 : Framq 41

Original frame

-
MeanShift

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021

FCSS

Fig. 1. Superpixels (induced by clipping supervoxels on frames #21, #41 and #61) obtained by GB [9], GBH [13], SWA [7], [32], [33], MeanShift [28],
TSP [5], TS-PPM [16], CSS [43] and our FCSS. All methods generate approximately 1,500 supervoxels. TSP, TS-PPM, CSS and FCSS produce reg-
ular supervoxels (and accordingly regular clipped superpixels), while other methods produce highly irregular supervoxels. As shown in Section 6,
these four methods are insensitive to supervoxel relabeling and achieve a good balance among commonly used quality metrics pertaining to super-
voxels, including UE3D, SA3D, BRD and EV, while FCSS runs 5x to 10x faster than TSP, and the peak memory required by FCSS is 22x smaller
than TSP and 7x to 15x smaller than TS-PPM. Both FCSS and CSS generate more supervoxels in content-rich areas (e.g., bushes on the lake
shore) and fewer supervoxels in content-sparse areas (e.g., lake surface), while FCSS better captures low-level video features (e.g., local object/
region/motion boundaries) than CSS, leading to better performance in two video applications (Section 7). See Appendix, which can be found on
the Computer Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/TPAMI.2020.2979714, for more visual comparison and

accompanying demo video for more dynamic details.

(2) Spatiotemporal uniformity: in non-feature regions, super-
voxels are uniform and regular in the spatiotemporal
domain; (3) Performance: computing supervoxels is time-and-
space efficient and scales well with large video data; (4) Easy
to use: users simply specify the desired number of supervox-
els and should not be bothered to tune other parameters; (5)
Parsimony: the above principles are achieved with as few
supervoxels as possible.

So far, none of existing methods satisfy all above prin-
ciples. In our previous work [43], we propose a content-
sensitive approach to address the parsimony principle. This
approach is motivated by an important observation: the
scene layouts and motions of different objects in a video
usually exhibit large diversity, and thus the density of video
content often varies significantly in different parts of the
video. Generating spatiotemporally uniform supervoxels
indiscriminately in the whole video often leads to under-
segmentation in content-dense regions (i.e., with high varia-
tion of appearance and/or motion), and over-segmentation
in content-sparse regions (i.e., with homogeneous appear-
ance and motion). Therefore, computing supervoxels adap-
tively with respect to the density of video content can
achieve a good balance among different principles.

To compute content-sensitive supervoxels (CSSs), Yi et al.
[43] map a video T to 3-manifold M embedded in a feature
space RS. The map @ is designed in such a way that the vol-
umetric elements in M give a good measure of content den-
sity in Y, and thus, a uniform tessellation 7 on M
efficiently induces CSSs (i.e., ® '(7)) in Y. In this paper, we
improve upon our previous work [43] and propose feature-
aware CSS (FCSS). Our key idea is that among all possible
uniform tessellations on M, we find one whose cell bound-
aries well align with local object/region/motion boundaries
in video. To achieve this goal, we improve the restricted
centroidal Voronoi tessellation (RCVT) method [23], [43]
and make the following contributions.

e To measure the degree of alignment between RCVT’s
cell boundaries and local video features, we propose
an average boundary distance measure djq,, and use it
to control the positions of generating points in RCVT.

e We formulate FCSSs by simultaneously minimizing
the RCVT energy (leading to uniform cells in RCVT)
and maximizing dy, (leading to good local feature
alignment).

e To quickly compute FCSSs, we propose a splitting-
merging scheme that can be efficiently incorporated
into the well known K-means++ algorithm [2], [40].

Our method has a theoretical constant-factor bi-criteria

approximation guarantee, and in practice our method can
obtain good supervoxels in very few iterations. By applying
the streaming version of K-means++ (a.k.a. K-means# [1]),
our method can be easily extended to process long videos
that cannot be loaded into main memory at once. We thor-
oughly evaluate FCSS, streaming FCSS and ten representa-
tive supervoxel methods on four video datasets. A visual
comparison is shown in Fig. 1. The results show that our
method achieves a good balance among over-segmentation
accuracies (UE3D, SA3D, BRD and EV in Section 6), com-
pactness, and time and space efficiency. As a case study, we
also evaluate these methods on two novel applications (fore-
ground propagation in video [14] and optimal video closure
[17]) and the results show that FCSS achieves the best propa-
gation and spatiotemporal closure performance.

2 PRELIMINARIES

Our method improves the CSS work [43] that uses RCVT to
compute a uniform tessellation of a 3-manifold M C R®.
Theoretically our method is a bi-criteria approximation to the
K-means problem [1], [2], [40]. We briefly introduce them
before presenting our method.

2.1 Video Manifold M and CSS

Simply treating the time dimension in a video equivalently
as spatial dimensions results in a regular 3D lattice repre-
sentation of voxels in R?, which is not proper due to possi-
bly non-negligible motions and occlusions/disocclusions.
To overcome this drawback, some methods (e.g., [5], [13])
use optical flow to re-establish a connection graph of neigh-
boring voxels between adjacent frames. However, even
state-of-the-art optical flow estimation methods [36] are still

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 27,2023 at 10:52:42 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TPAMI.2020.2979714

YIETAL.: FEATURE-AWARE UNIFORM TESSELLATIONS ON VIDEO MANIFOLD FOR CONTENT-SENSITIVE SUPERVOXELS

(e+1y+1,t+1)
O

|

9 gt iy YT oab
:a Yo Mapping ® '
! ® a7 A

. YcR? M =d(Y) < R®

O O
(e=1y—1i-1)

Fig. 2. Left: regular 3D lattices of voxels in R?. Middle and right: the map
®: T — M C R® stretches the unit cube [, (red box) centered at the
voxel v(z,y,t) €T into a 3-manifold M. Each corner «; of [,
i1 =1,2,...,8, is the center of its eight neighboring voxels.

imperfect and may introduce extra errors into supervoxel
computation. Recently, Reso et al. [31] propose a novel for-
mulation specifically designed for handling occlusions. On
the contrary, without any special treatment for occlusions,
the video manifold M proposed in [43] provides an elegant
continuous search space that circumvents the aforemen-
tioned drawback.

In [43], M is constructed as a 3-manifold embedded in a
combined color and spatiotemporal space R’ which
stretches a video Y by amap ® : T — M C R (Fig. 2)

D(v) = (Mz, Ay, Aat, Asl(v), Aza(v), A3b(v)), (1)

where a voxel v € T is represented by (x,y,t), (x,y) is the
pixel location and ¢ the frame index. (I(v),a(v),b(v)) is the
color at the voxel v in the CIELAB color space. A\; = Ay =
0.435 and A3 = 1 are global stretching factors.

The volume of a region ®(£2) C M depends on both the
volume of) C T and the color variation in). The higher
variation of colors in () (indicating higher variation of
appearance and/or motion), the larger the volume of ®((2).
Therefore, the volume form on M gives a good measure of
content density in T and the inverse mapping ® ' of any
uniform tessellation on M generates CSSs in Y.

To measure the volume in M, Vve Y, the volume
V(®(E,)) of ®([H,) C M is quickly evaluated only
once [43], where [], is the unit cube centered at the voxel v
(Fig. 2 middle). Then the volume of ®(2) C M is simply the
sum E'UJEQV(CD(DW))-

2.2 Restricted Voronoi Tessellation and RCVT
RCVT has been used to build uniform tessellations on mani-
folds [23], [43]. Denote by Sx = {s;}X, a set of generating
points and M a 3-manifold in R°. The euclidean Voronoi
cell of a generator s; in R%, denoted by Cgg, is

Cpo(si) 2{z €R": [z = silly < ||z — s,

2
Vj;éi,s‘jGSK}. @

The restricted Voronoi cell C, is defined to be the intersec-
tion of Cps and M

C M (S,j)
and its mass centroid is

mé f.’l;EC/\/((si) Idl'
o dr

2 MO Cyo(si), 3)

“)

z€Cp(si)

The restricted Voronoi tessellation RVT'(Sk, M) is the col-
lection of restricted Voronoi cells

3185
RVT(SK,M) é{CM (87') #* @,VS,; S SK}, (5)
which is a finite closed covering of M. An RVI'(Sk, M) is

an RCVT if and only if each generator s; € S is the mass
centroid of Cay(s;).

Theorem 1 [23]., [43] Let M be a 3-manifold embedded in R®
and K € Z,. be a positive integer. For an arbitrary set Sk of

points {s;}1* | in R® and an arbitrary tessellation {C;}~ on
M, U filC’i =M, CiNC; =0, Vi # j, define the tessellation
energy functional as follows:

/ — 5 | dx. (6)

Then the necessary condition for £ to be minimized is that
{(si,Ci)}E | isan RCVT of M.

E{(si, C;

Theorem 1 indicates that RCVT is a uniform tessellation
on M, which minimizes the energy £.

2.3 Bi-Criteria Approximation Algorithms

The discretized counterpart of RCVT is the solution to the
K-means problem on the manifold domain M. Given a fixed
K, denote by S%' = {s7'} | and {C?'}E, the (unknown)
optimal generator set and tessellation on M respectlvely,
which minimize the energy €. Let Sx and {C;}, be the gen-
erator set and tessellation output from an algorithm A. An
algorithm A is said to be b-approximation if for all instances
of the problem it produces a solution {s;, C;}I | satisfying

E{(s, CYEE))

e({(sj”‘,cf”‘)}in -
if it outputs {(57,

cells, such that

b. An algorithm is called (a, b)-approximation,

)}"K with aK generators and tessellation
< Ci >} f‘)

3 OVERVIEW OF FCSS

The classic Lloyd method is used in [23], [43] to compute
RCVT on manifold M, which iteratively moves each gener-
ator s; to the corresponding mass centroid of Cy(s;) and
updates the RVT. Note that the Lloyd method converges to
a local minimum. Among all possible local minimums (each
corresponding to a uniform tessellation on M), we propose
FCSS which aims at finding one whose cell boundaries well
align with local video boundaries. To achieve this goal, our
FCSS method is built upon an important observation: when
the set of generating points are far away from local object/
region/motion boundaries in M, the cell boundaries of
their RCVT will well align with these local video bound-
aries. See Fig. 3 for an illustration.

In a video T, local boundaries most likely appear in
regions with high variation of appearance. Therefore, we
can characterize these local regions in M by the volume
V(®([y)): the larger the volume V(®([],)), the higher the
probability that the voxel v lies on a local boundary. Since
V(®([,)) > 1 and it can be extremely large at sharp bound-
aries, we use the following nonlinear normalization:

< b,wherea > landd > 1.

Dy (0) = %aretan(V((I)(Dv))), @

to characterize the possibility of a voxel v being on the local
boundary. Then our objective can be casted as finding a set

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 27,2023 at 10:52:42 UTC from IEEE Xplore. Restrictions apply.

E

Video manifold

A local minimum A local minimum
of tessellation energy = 4.4E+7 of tessellation energy = 4.3E+7
Average boundary distance = 2.1E+7 Average boundary distance = 2.2E+7

Fig. 3. Comparison of FCSS and CSS generation on a synthetic, degen-
erate gray video Y, for easy illustration. In T, each image frame at time ¢
is a degenerate 1D gray line image I;. Supervoxels are generated by
a tessellation in T. Left: T is mapped to a video manifold M =
®(I,t) C R?, whose area elements give a good measure of content den-
sity in Y. Middle and right: two local minimums of the tessellation energy
specified in Eq.(6). The generating points are shown in dots on M and
their inverse images by ® ! are shown in red crosses + in Y. In this toy
example, the local boundaries in T can be characterized by the zero
crossing of the second derivative of Y(I,¢) (shown in red circles in left).
Note that the tessellations in middle and right are generated without this
information. The generating points in FCSS are farther away from local
boundaries [indicating by a larger average boundary distance proposed
in Eq.(8)], and the cell boundaries of the corresponding tessellation
better capture these local boundaries than that of CSS.

of generating points {s;}~,, in which each s; is around the
mapped position ®(v') of a voxel v with low boundary possi-
bility pygy(v'). We formulate this objective by proposing an
average boundary distance (ABD) for a tessellation {s;, C,L-}fi 1

K
({5 OV =3 [@l = slide, ®
i=1 JoeC;

where pyg,(z) = pbdry((b’l (x)). The larger the distance djqy,
is, the farther {sl}fil are from the local boundaries. Two
examples are shown in Fig. 3: the average boundary distan-
ces of the middle and right tessellations are 2.1 x 107 and
2.2 x 107, respectively.

In the next section, we implement FCSS using a variant of
the Lloyd method that finds a uniform tessellation by mini-
mizing the tessellation energy defined in Eq. (6) in such a
way that the optimal generating points are determined by
minimizing the following ABD-weighted tessellation energy

Eu({(s1,CO}E)
= &({(s0, COHEL) = aduary ({51, DY) 9)

K 2
=35 [@)l s
zel;

where « > 0 is a weight to balance the two terms £ and
dpary- In all our experiments, we set o = 0.8.

4 IMPLEMENTATION OF FCSS

To obtain a feature-aware uniform tessellation {(s;, C’i)}fil

in M, our FCSS method consists of the following two steps
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloa

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021

e Initialization (Section 4.1). We apply a variant of the
K-means++ algorithm [1], [2], [40] to determine the
initial positions of generating points Sk = {sz}Z 1
which ensures an (O(1), O(1))-approximation.

e Feature-aware Lloyd refinement (Section 4.2). Obser-
ving that the classic Lloyd method converges only
to a local minimum and without feature-aware con-
trol on the positions of generating points, we opti-
mize the tessellation and the positions of generating
points separately by minimizing two energy forms
(i.e., Egs. (6) and (9)), leading to a local minimum of
the content-sensitive uniform tessellation on the
manifold M that also optimizes the average bound-
ary distance djg, to improve feature alignment of
cell boundaries. We further propose an efficient
splitting-merging scheme that helps move the solu-
tion out of local minimums, while preserving the
approximation ratio.

The FCSS method is easy to implement and can obtain
high-quality supervoxels in very few iterations. Theoreti-
cally FCSS is (O(1),O(1))-approximation (Section 4.3). We
also present a simple extension of FCSS to streaming FCSS
for processing long videos (Section 5).

Algorithm 1. Initialization

Input: A video T of N voxels and the desired number of super-
voxels K.

Output: The initial positions of K generating points Sx = {s;}1* .

1: Compute V(P ([,)) for each voxel v € Y.

2: Choose a point v; from all voxels v € T with probability pro-
portional to V(®([,)).

3: Set S = (I)(’Ul), Sl = {51} andj =1.

4: while j < K do

5: Choose a point v;,; from all voxels v € T with probability

proportional to the cost cs; (v) (Eq. (11)).

6: Setsj =P(vj11), Sj = S U{sj1}and j=j+1.
7: end while
4.1 Initialization

We apply a variant of K-means++ algorithm to obtain a prov-
able hlgh-quahty initialization of generating points Si =
{5} ,. The pseudo-code is summarized in Algorithm 1. In
each step, a point in M is picked up with probability propor-
tional to its current cost (defined as its squared distance to the
nearest generator picked so far), and added as a new genera-
tor. To compute the required probability in the manifold
domain M, we consider the positions of mapped voxels
®(v) € M, Vv e Y. With respect to an existing generator
®(v;), the cost of a mapped voxel @ (v;) € M, j # i,1s

o (v)) = / L Ol
z€ v

~ V(O(0,) - [@(v;) — Dvi) 3.

Then the cost of picking ®(v;) with respect to an existing
generator set S is

(10

cs(v;) = rurllelgl ¢, (). (11)
Algorithm 1 runs in O(NK) time. A simple adaption of the
proofs in [2], [40] shows the following results.

ed on December 27,2023 at 10:52:42 UTC from IEEE Xplore. Restrictions apply.

YIETAL.: FEATURE-AWARE UNIFORM TESSELLATIONS ON VIDEO MANIFOLD FOR CONTENT-SENSITIVE SUPERVOXELS

Lemma 1 [2], [40]. If RVI'(Sk, M) is used as the tessellation
for the selected K generators, Algorithm 1 is an expected
O (log K)-approximation algorithm. If BI (B > 1) generators
are selected, Algorithm 1 is an expected b-approximation algo-
rithm, where

(12)

b < 8(1 +1+7\/5>

2(p—1)

4.2 Feature-Aware Lloyd Refinement

Given the initial generators Sx = {si}fil, s; € M, the classic
Lloyd method computes RCVI'(Sg, M) iteratively by alter-
nating the following two steps:

e Step 1: Fixing the generator set Sk, compute
RVI'(Sk, M) (ref. Eq. (5));

e Step 2: For each cell Cyq in RVI'(Sk, M), update its
generator to be the mass centroid of C, (ref. Eq. (4)).

Algorithm 2. FCSS Generation

Input: A video Y of N voxels, the desired number of supervox-
els K, numyqndom the number of repeated random sampling
of generators in each iteration, and the maximum number
of iterations iter,,q..

Output: K content-sensitive supervoxels.

1: Initialize the generators Sx = {s;}X, (Algorithm 1).

2: Compute RVI'(Sg, M).

3: Setiter = 0.

4: while iter < iter,,,, do

5: for each cell Cv(s;) in RVI do

6: Compute the candidate position s; that minimizes the
weighted tessellation energy (Eq. (14)).

7 Compute the mass centroid m; of C(s;).
8: if H,SVL — mLH < HSi — mlH then
9: Update s; by s;.
10: else
11 Update s; by 5;, which is the intersection point between
the sphere centered at m; of radius ||s; — m;|| and the
line segment connecting m; and s;.
12: end if
13: end for
14: Compute RVI'(Sg, M).
15: Setn = 0.
16: whilen < numgqudom do
17: Randomly pick three generators s,,s;,s; in S
(Algorithm 4).
18: Check the splitting-merging feasibility of (s, si,s;)
(Algorithm 3) and put the return values in
(Flag, s;, s;, s
19: if Flag == TRUF then
20: Update Sk by splitting s,, into (s),, s;) and merging
(si, s;) into s)..
21: end if

22: n=n+1;

23: end while

24: Locally update RVI'(Sk, M).

25: dter = iter + 1;

26: end while

27: Compute &' (RVT'(Sk, M)) to obtain K supervoxels.

This method converges only to a local minimum with a
large number of iterations [8] and without feature-aware con-
trol on the cell boundaries of RVIT'(Sk, M). We introduce the

3187

average boundary distance (Eq. (8)) into the tessellation energy
(Eq. (9)) and propose the following feature-aware Lloyd refine-
ment and Algorithm 2 summarizes the pseudo-code:

e Step 1 (lines 2&14&24): Fixing the generator set Sk,
compute RVI' (S, M);

e Step 2 (lines 5-13): For each cell Cy in RVI'(Sk, M),
update its generator to a place ®(v') to reduce the
weighted tessellation energy (Eq. (9)) which jointly
improves content-sensitive uniform tessellation and
cell boundary feature alignment, while ensuring the
tessellation energy (Eq. (6)) is not increased.

e Step 3 (lines 15-23): Perform the splitting and merging
operations to move the solution out of local mini-
mums, while ensuring the tessellation energy
(Eq. (6)) is not increased.

e Step 4 (line 4): If RVI'(Sk, M) satisfies the stopping
condition, then stop; otherwise, return to Step 1.

The implementation of Steps 2 and 3 is presented in

Sections 4.2.1 and 4.2.2 respectively. The convergence of
Algorithm 2 is proved in Section 4.3.

4.2.1 Feature-Aware Update of Generators

Our objective is to move each generator to a place ®(v')
whose inverse mapping ¢’ € T has low boundary possibility
Doary(v'), and meanwhile the RCVT tessellation energy
(Eq. (6)) is decreased. To do so, we minimize the weighted
tessellation energy (Eq. (9)) for each generator s;, i.e., setting

o, ({5,015)

= 1
%,) 13)
which implies that the optimal position s; for s; is
el 1- APbdry\ T xdx
gi:fieq(bl J()) (14)

fxec,-(l — Py (x))dz

However, moving s; to s; may increase the tessellation
energy (Eq. (6)). We make use of the following proposition.

Proposition 1. Given an RVT(Sk, M), we fix the tessellation
{CM(sj)}fil and move a generator s; € S to a new position
s;. Let C; = Caq(s;). The tessellation energy (ref. Eq. (6))

(s V) = D860 =Y [o=l (15)
j=1Jrel;

satisfies

if and only if
lsf = mill < lls; —mall, (17)
where m; is the mass centroid of the cell C; (ref. Eq. (4)).

Proof. Given inequality (17), we have

llsi — mil3dx

zeC;

> E(mi,) +/

zeCy

|| — mj|[3dx = £(s], C;).

77

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 27,2023 at 10:52:42 UTC from IEEE Xplore. Restrictions apply.

3188

On the other hand, if £(s;, C;) > £(s), C;), then we have
fmeq lmi — siHQdaz > fmecz_ lmi — siHQdaz, indicating ||m; —
si|l > |lm; — s¢||. That completes the proof.]

In Algorithm 2 (lines 8-9), we check the condition in
Eq. (17) using the optimal position ;. If it is satisfied, we
update s; by s;. Otherwise, we set s; by moving along the
direction from m; to s; (the average boundary distance djq-,
is expected to be increased along this direction) and locating
it at the boundary of the sphere centered at m; of radius
Isi — m;|| (moving s; to this place does not increase the tes-
sellation energy). In both cases, we try to reduce the
weighted tessellation energy, while ensuring the tessellation
energy is not increased.

Algorithm 3. Check Splitting-Merging Feasibility
Input: Three generators (s, s;, ;) in Sk and an RVI'(Sk, M).
Output: A Boolean variable Flag indicating the feasibility and
three new generators (s, s;, s k)
1: Compute the mass centroids s/, , s; and s of Cr(sm), Crm(si)
and C)(s;), respectively.
2: Compute the diameter d,, of the cell C(s,,) and the points
D1 and pp,2 (see Definition 1).
3: Compute two new cells C'(p;,1) and C’(pn2), which are the
Voronoi cells of p,,,; and p,,,2 in the domain Cy (s,).
: Compute the mass centroids s, s;, and s; of Cr(si) U Cum(s;)),
C'(pm1) and C'(pim2), respectively.
: Compute Tp,i; in Eq. (20).
sif s, = syl > Ty and Hs
returnTRUE and (s
else
return FALSE and (NULL, NULL, NULL).
: end if

[N

S;n”2 > Tim,i,j then

Sp ¢ q’ 91»

4.2.2 Splitting and Merging Operations

In Algorithm 2 (lines 16-23), we perform splitting and merg-
ing operations for jumping out of a small local search area
in M while the tessellation energy still does not increase.
We find that these splitting and merging operations help
Algorithm 2 obtain high-quality supervoxels in very few
iterations.

A splitting operation A : s, — (s}, s;) splits an RVT cell
Cum(sm) into two new cells C(s),) and C(s)). Conversely, a
merging operation V : (s;,s;) — s;, merges two RVT cells
Cm(s;) and Cy(s;) into a new cell C(s),). Splitting reduces
the tessellation energy and merging increases it. The number
of generators does not change by applying a pair of splitting
and merging operations (A,V) : (s, (si,5;)) — ((sp, Sy)s Sk)-
Our goal is to design a pair (A, V) that does not increase the
tessellation energy. We make use of the following definition
and proposition.

Definition 1. The diameter d; of a cell Cy(s;), si € Sk, is the
maximum euclidean distance between pairs of points in the cell, i.e.,

d; =
Ve, e(‘

Hw = 4lls- (18)

Denote by p;1 and pj the two points in Ca(s;) satisfying
lpir — piall = di.

Proposition 2. Let s,,,s;,s; be three genemtors in an
RVT(Sk, M). Let (my,, m;, m;) and (s, s’) be the masses

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021

Pl DPm2

dy A

Fig. 4. The diameter d,, = ||p1 — pm2||, of an RVT cell Cv(s,,) (shaded
area) is the maximum euclidean distance between pairs of points in this
cell. The splitting operation A : s, — (s;) sjl) splits an RVT cell Cv(sy,)
(shaded area) into two arbitrary new cells C] (orange shaded area) and
C} (green shaded area), satisfying p,,; € C} and p,,» € C}, CiNCy, =0
and C} U C) = Cum(sm). The mass centroids of cells Cu(s,,,), Cy and C
are s,,, s,, s, respectively. Lemma 2 proves that s;, lies on the line
segment connecting s, and s; .

q’

and mass centroids of the cells Cy(sm), Cm(si), Cm(s;),
respectively. Consider a splitting of C(sy,) into two arbitrary
new cells C and C), which satisfies p,,1 € C', pma € Cy,
CiNCy=0and CyUCy = Cp(sim)- Let s, s, and s be the
mass centroids of C}, Cy and Cp(s;) U Ca(s;), respectively. If

/
14

I, = shully > Ty and llsh = slully > Ty (9)

where

m;m;

Mm (mL +m

Tmyij = HS;’ - S;’”Qv (20)
)

then the pair of operations (A, V) : (8m, (8i,85)) — (8} 5)s 5)
do not increase the tessellation energy £ in Eq. (6).

Proof. See Appendix, available in the online supplemental
material. O

To ensure the pair of operations (A, V) do not increase
the tessellation energy &, in Algorithm 2 (lines 16-21), we
check the splitting-merging feasibility condition (Eq. (19))
and Algorithm 3 summarizes the pseudo-code. Note that
computing the diameter of an arbitrary region (line 2 of
Algorithm 3) is time-consuming. In practice, we compute
the axis-aligned bounding box B of Ca(s,,). B is deter-
mined by two supporting points p; and p, in Cp(sy,) and
we use them as fast approximations to p,,; and p;,2.

Lemma 2. Let s, s, and s, be the mass centroids as specified in
Proposition 2. Then s, lies on the line segment connecting s),
and s,

Proof. Refer to Fig. 4. Let m,,, m; and my be the masses of
Cm(sm), Cy and C. Since C;NCy =0 and C;UC) =
Cri(sm), we have

;o frecﬂ,[(sm) vdr fzec'l dx + fzeCé s

M my +ma (21)
mys, +mas; _om my
mi + ms mi1+mo P my 4+ my v
That completes the proof. 0

Note that for a region) C T with a fixed volume, the
higher variation of colors in (), the larger the volume of

Authorized licensed use limited to: TIANJIN UﬁlVéRS‘fTY Downloaded on December 27,2023 at 10:52:42 UTC from IEEE Xplore. Restrictions apply.

YIETAL.: FEATURE-AWARE UNIFORM TESSELLATIONS ON VIDEO MANIFOLD FOR CONTENT-SENSITIVE SUPERVOXELS

®(Q) ¢ M and vice versa. Lemma 2 and Proposition 2
imply the following important geometric observation:

e to pass the feasibility checking in inequalities (19), we
need to pick up three generators (s, s;, 5;) that have
large ||s;, — s, [l, and [|s, — s,,[|,, and small 7,,,; ;;

e a large volume of a cell Cy(sy,) will result in large
M, s, = spll, and [[s; — 7, [[,, and small 7,5,
implying that the larger the volume of a cell Cy(sy,),
the more likely it is split, thus producing more gener-
ators in content-rich regions.

e small volumes of cells Cy((s;) and Cy(s;) will result
in small m;, m; and 1,,;; in Eq. (20), implying that
the smaller the volumes of cells C(s;) and Cy(s;),
the more likely they are merged, thus reducing the
number of generators in content-sparse regions.

Algorithm 4. Randomly Pick Three Generators

Input: An RVI'(Sg, M) and an expected cell volume E(V(Cx))
(Eq. (22)).

Output: Three generators (s, s;, s;) in Sk.

: Set Sgense = 0 and Sgperse = 0.

: for each cell Cp(s;) in RVI'(Sk, M) do

Compute the volume V(C)(s;)).

if V(Cu(si)) > 4E(V(Cp)) then
Sdense = Sdense U {51}

else if V(Cu(s;)) < E(V(Cwn))/4 then
S(g[,(,,,-sﬂ = S,,-‘,,{,me U {S,‘}.

end if

: end for

: if |Sgense| > 2 then

Randomly pick a generator s,, in Sgense.

: else

Randomly pick a generator s,, in Sk.

: end if

: Randomly pick a generator s; in Sgyarse-

: Collect all neighboring pairs of s; using 26-connectivity from
Ssparse and put them into the set V.

17: if |[N| > 2 then

18: Pick a pair (s;,s;) in N such that C(s;) has the closest

mean color to C(s;).

19: else

20: Randomly pick two generators s; and s; in Sk.

21: end if

22: return (s, s;, 55).

PN TR

S i QU Y
DU A WN P OO

Therefore, to increase the feasibility of the splitting-
merging operation at line 18 of Algorithm 2, we estimate
content-dense and content-sparse regions in RVI'(Sk, M)
and collect their corresponding generators into subsets
Sdense and Sgparse in Algorithm 4. If Syense and Sgperse contain
sufficient generators, we randomly pick two neighboring
generators in Sj,,... to be merged and pick one generator in
Siense to be split; otherwise, we randomly pick three genera-
tors in Sg. To estimate the content density of cells, we com-
pute the expected cell volume as the average of K cells over
the total volume of video manifold M

_ Z’UET V((I)(Dv)))

E(V(Cu)) -

(22)

For each cell Cy(in RVI'(Sk, M), we compare its volume
V(Cpm) with E(V(Cu)): (1) if V(Cr) > 4E(V(Cu)), we put

3189

the generator of this cell into Sgense, and (2) if V(Cy) <
E(V(Cm))/4, we put the generator of this cell into Spqrse-
Algorithm 4 summarizes the pseudo-code.

4.3 Proof of (O(1),O(1))-Approximation

In all our experiments, we set iter;,q,; = 20 and num,gndom = 20
in Algorithm 2. We show in Section 6 that our algorithm can
obtain high-quality supervoxels in 20 iterations. We have the
following theoretical results.

Theorem 2. By selecting (1+¢)K generators, 0 < ¢ < 1,

Algorithm 2 is a bi-criteria {1+ ¢,8 (1 + 1J;—;@))—apprwcima—
tion algorithm in expectation.

Proof. Let S = {s”'}X, and {C”'}E be the (unknown)
optimal generator set and tessellation on M, which mini-
mize the energy & in Eq. (6). Let Eopr = E({ (s, C7)}E).

By Lemma 1, for any K’ = (1 + ¢) K generators selected by
Algorithm 1, the expected tessellation energy € satisfies

(23)

E(E{(s, CONE)) 8<1 1 ;Eﬁ)

Eorr

In feature-aware Lloyd refinement, we alternate the
two steps—i.e., the feature-aware update of generators
and splitting-and-merging operations—until the termi-
nation condition is reached. Both steps are designed for
not increasing the energy £. Therefore for any tessellation
RCVI(Sgr, M) output from Algorithm 2, its expected
tessellation energy & satisfies

E(E(RCVT(Sxr, M))) < 8<1 41 +2f> Eorr.

That completes the proof. 0

Theorem 3. By selecting (1 + €)K generators, 0 < € < 1, the
time and space complexities of Algorithm 2 are O(NK) and
O(N + K), respectively.

Proof. In Algorithm 2 (line 1), the initialization step (by
Algorithm 1) takes O(NK) time and O(N + K) space. In
the iteration (lines 4-26),

e by using a local search strategy in [23], computing
orlocally updating RVT takes O(V) time and space;

e feature-aware update of generators takes O(N)
time;

e randomly picking three generators by Algorithm
4 takes O(N) time and space;

e Dboth checking the splitting-merging feasibility
and applying the splitting-merging operations
take O(1) time and space.

As a summary, the time and space complexities of
Algorithm 2 are O(NK + iterp,(N + num,eqN)) and
O(N + K), respectively. Since we used fixed values
iterma; = 20 and numyniom = 20, the time complexity
reduces to O(NK). That completes the proof. O

5 STREAMING FCSS FOR LONG VIDEOS

Using a simple adaption of the streaming K-means algo-
rithm [1], Algorithm 2 is readily extended to a streaming

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 27,2023 at 10:52:42 UTC from IEEE Xplore. Restrictions apply.

3190

version for processing long videos that cannot be loaded
into main memory at once. The streaming FCSS algorithm
represents the video manifold M by an ordered, discretized
sequence of weighted points M = {(z;,y;,t;,w;)},, where
(xi,yi,ti) is the position of voxel v; in T and w; is the volume
V(®(,)). Pseudo-code is summarized in Algorithm 5.

Algorithm 5. Streaming FCSS

Input: A video T of N voxels and the desired number of super-
voxels K.
Output: K content-sensitive supervoxels.
1: Compute the discretized manifold representation M =
{(xu y17 tlu wl)}1\ 1°
: Initialize 5 = M.
while S cannot be loaded into main memory do
Set S = 0.
Divide S into [disjoint batches x;, ..., x;, such that each
batch can be loaded into main memory.
for each batch x; do
Apply Algorithm 2 to compute (1 + ¢) K generators Sx(x;)-
Compute RVI'(Sk (x,), xi)-
for each generator g; in Sk (x;) do
Compute the total weight of all points in the cell cor-
responding to g; in RVI'(Sk(x;), x;) and assign it to
gj as the weight w;;
11: end for
12: 8= S5U(gj,wy), Vg; € Sk(x:)-
13: end for
14: S=25.
15: end while
16: Apply Algorithm 2 to S for obtaining K supervoxels.

G @

SV PNID

The simple one-pass streaming scheme analyzed in [1] par-
titions the points M sequentially into batches {x;,..., x;},
such that each batch yx; of points can be loaded into main
memory. For each yx;, we preform Algorithm 2 to obtain
(1 + ¢)K generators and the weight for each generator can be
determined by the corresponding cell in the RVT applied on
x;- Finally, we consolidate all weighted generators produced
from { x4, ..., x;} into one single weight point set S. If S is still
too large to fit in memory, the above process repeats. When S
fits in memory, we apply Algorithm 2 again on S to obtain K
supervoxels. Assume that the size of main memory is = (in
terms of the point number). Since each batch produces
(1 +¢)K generators, to ensure that the process only needs to
be performed once, the number of batches [should satisfy
both of the following: §* < Z (where each batch fits in mem-
ory) and (1 +¢e)K -1 <EZ (where S fits in memory), ie.,
Nci< k- Here N is the number of weighted points in M
(1 e., the number of voxels in the video). Ignormg rounding,
such [exists, if &< <1+£)K, ie, N <f This shows
although our algorlthm may repeatedly apply lines 4-14 to
reduce the size of S to handle arbitrarily large videos, in prac-
tice, doing so once already allows processing very large vid-
eos, with up to % voxels, significantly larger than = voxels
that can be handled by non-streaming FCSS. Note that in any
case, the whole video only needs to be processed once, and
remaining steps involve much smaller set S. In our experi-
ments, we sete = 0.2.

Theorem 4. If (1 + ¢)K generators, 0 < e < 1, are selected by
Algorithm 2, Algorithm 5 is (O(1), O(1))-approximation.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021

Proof. By Theorem 2, selecting (1 + ¢) K generators, 0 < ¢ < 1,
makes Algorithm 2 an expected bi-criteria (O(1),0(1))-
approximation algorithm. Theorem 3.1 in [1] states
that if Algorithm 2 is an (a,b)-approximation, the two-
level Algorithm 5 is an (a,2b + 4b(b + 1))-approximation.
Accordingly, Algorithm 5 is (O(1), O(1))-approximation.
That completes the proof. 0

6 EXPERIMENTS

We implemented FCSS (Algorithm 2) and streaming FCSS
(Algorithm 5) in C++ and source code is publicly available.'
We compare our method (FCSS and streaming FCSS) with
our previous work (CSS and streamCSS) [43] and eight
methods: TS-PPM [16] and seven representative methods
selected in [41], including NCut [10], [11], [34], SWA [7],
[32], [33], MeanShift [28], GB [9], GBH [13], streamGBH [42]
and TSP [5]. All the evaluations are tested on a PC with an
Intel Core E5-2683V3 CPU and 256 GB RAM running Linux.
Since FCSS, streaming FCSS, CSS and streamCSS adopt a
random initialization, we report the average results of 20
initializations. The performances are evaluated on four
video datasets, i.e., SegTrack v2 [20], BuffaloXiph [6], BVDS
[12], [37] and CamVid [3], which have ground-truth labels
drawn by human annotators.

We adopt the following quality metrics that are com-
monly used for supervoxel evaluation. Some visual compari-
sons are illustrated in Fig. 1, See Appendix, available in the
online supplemental material..

Adherence to Object Boundaries. As perceptually meaning-
ful atomic regions in videos, supervoxels should well pre-
serve the object boundaries of ground-truth segmentation.
3D under-segmentation error (UE3D), 3D segmentation
accuracy (SA3D) and boundary recall distance (BRD) are
standard metrics in this aspect [5], [18], [41]. UE3D and
SA3D are complementary to each other and both measure
the tightness of supervoxels that overlap with ground-truth
segmentation. Denote a ground-truth segmentation of a
video as G={31,0, Jx.}, and a supervoxel segmenta-
tion as S = {51, 82, ..., 5k, }, where K¢ and Ky are the num-
bers of supervoxels for the ground-truth segmentation G
and segmentation S. The UE3D and SA3D metrics are
defined as

Z{éjeS:v(gjmg,) >0} V(s;) = VI(3)

UE3D = — = (24)
Kea Z V(gi)
9160
1 25,85 ng)205v() V(85N i)
SA3D = — J Lo , (25)
K ggG V(g:)

where V(z) is the voxel number in a segment z. Both
Egs. (24) and (25) take the average score from all ground-
truth segments G. A small UE3D value means that very few
voxels are leaked from ground-truth segments. The range of
SA3D values is [0,1], where a larger value means a better
over-segmentation result. BRD measures how well the
ground-truth boundaries are successfully retrieved by the
supervoxel boundaries. Denote the tth frame’s ground-truth

1. https:/ /cg.cs.tsinghua.edu.cn/people/~Yongjin/Yongjin.htm

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 27,2023 at 10:52:42 UTC from IEEE Xplore. Restrictions apply.

https://cg.cs.tsinghua.edu.cn/people/~Yongjin/Yongjin.htm
https://cg.cs.tsinghua.edu.cn/people/~Yongjin/Yongjin.htm

Y1 ETAL.: FEATURE-AWARE UNIFORM TESSELLATIONS ON VIDEO MANIFOLD FOR CONTENT-SENSITIVE SUPERVOXELS 3191
30 0.9 3 1.4
b ——GB —4—NCut —e—GB —+—NCut —o—CSS
—e—GBH ~#—TS-PPM —o—GBH ——TS-PPM
251 —+—streamGBH —o—CSS — ——streamGBH ——CSS
—a—swA —*—FCSS 08 = 25 —a—swA —+—FCSS 12
——TsP —o—streamCSS) ——TSP —8—streamCSS -
—&—MeanShift —&—streamFCSS —e—MeanShift —4—streamFCSS
2
o a
o o 1
o) (=]
15
—e—GB ~#—=NCut
—e—GBH ~h—TS-PPM
——streamGBH —o—CSS 0.8
|—4—SWA ~#>—FCSS 1
——TSP —o—streamCSS
—e—MeanShift —#—streamFCSS
0 5 05 0.6
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
Number of supervoxels Number of supervoxels Number of supervoxels Number of supervoxels
(a) UE3D (b) SA3D (c) BRD (d) BRD of FCSS and CSS
1 0.35 1400 20
——GB P —o—C! —e—GB —o—GB
R e, o s, 200 | oo / M—ce
09 03 [Er et i et o o
» B 1000 H——TSP o1 P—o—TsP
8 0.5 B —a— Meanshit o} —a—eanshit
Q c | NCi =~ ot TS-PPM
08 5 O gQ ||—*—TsPPM —o—Css
> 3] o —o—cs: > —s—FCSS
w @ 02 3 ——FCSS 10 ss
07 =3 = 600 | |—=—streamcss @] —a—streamFCSS
A —e—GB —#—NCut g 1 w |—A— streamFCSS. s
—o—GBH 4 TS-PPM 3018 S 400 w
——streamGBH —o—CSS = =5
0.6 —A—SWA —*—FCSS 01
——TsP —e—streamCSS : 200
—e—MeanShift —4—streamFCSS
05 0.05 EE‘" = 0 0 =
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 0 2000 4000 6000 8000 10000
Number of supervoxels Number of supervoxels Number of supervoxels Number of supervoxels
(e) EV (f) Compactness (g) Runtime with respect to K (h) Peak memory without NCut

Fig. 5. Evaluation of ten representative methods and our methods (FCSS and streaming FCSS) on the SegTrack v2 dataset. Superpixels in all meth-
ods are unrelabeled. Due to its high computational cost, NCut is run at a fixed frame resolution of 240 x 160 downsampled from original videos and is
not present in (h). Only FCSS achieves good performance on all seven metrics of UE3D, SA3D, BRD, EV, compactness, running time and peak mem-
ory. In particular, FCSS is 5x to 10x faster than TSP The peak memory of FCSS is 22x smaller than TSP and 7x to 15x smaller than
TS-PPM. Similar performances are observed on the other three video datasets (BuffaloXiph, BVDS and CamVid), which are reported in Appendix,

available in the online supplemental material.

segmentation as G, and the tth frame’s supervoxel segmen-
tation as S’. The BRD metric is defined as

bD

t peB(Gh

1

BRD=——
3| BGY]

min d(p, q), (26)

qeB(S?)

where B(-) returns the 2D boundaries in a frame, d(-,-)
measures euclidean distance between two points, and ||
returns the number of pixels in a 2D boundary. As shown
in Figs. 5a, 5b, and 5c, TS-PPM and FCSS have good per-
formance on UE3D, SA3D and BRD, demonstrating their
ability to adhere to object boundaries. GBH and SWA are
only good at BRD and SA3D, but not good at UE3D. CSS
is only good at UE3D and SA3D, but not good at BRD.
TSP and NCut are only good at UE3D, but not good at
SA3D and BRD. GB and MeanShift are not good for all three
metrics UE3D, SA3D and BRD. All three streaming methods
have similar performance on SA3D, while streamFCSS
and streamCSS are better in UE3D and streamGBH is
better in BRD.

Explained Variation (EV). EV is a standard metric that meas-
ures the color variations in supervoxels [26], [41], defined as

2oses(n(3) — w5
iz —)

EV = , (27)

where 1 is the average color of all voxels in a video, 1 (5;) is
the average color of the supervoxel §;, and z; is the color of
the voxel j. The score range is in [0,1], where a larger value
means a better representation (i.e., the color in each super-
voxel is closer to homogeneity). As shown in Fig. 5e, SWA
has the largest EV. GBH, FCSS, TS-PPM are better than CSS
and TSP, which are in turn better than other methods. For

the three streaming methods, streamFCSS and streamCSS
have similar performance and are better than streamGBH.

Compactness. It is a measure of shape regularity [44],
defined as

|5]

1
62V (5;)
N =—3 (28)

(8 =Y Q) o)

5 €S

where Q(5;)

[

where S is a given supervoxel over-segmentation as used in
Egs. (24) and (25), A(5;) and V(5;) are bounding surface
area and volume of supervoxel §;, respectively. In many
real-world video applications, their solutions rely on mini-
mizing an energy function defined on a spatiotemporal
supervoxel graph in a video clip. The shape regularity of
supervoxels has a direct influence on the complexity of this
spatiotemporal supervoxel graph, and thus, affects the
application performance. It was observed that compact
supervoxels usually have better segmentation performance
than non-compact ones. The larger the compactness value
is, the more regular the shape of supervoxels is. As shown
in Fig. 5f, CSS and FCSS have the largest compactness val-
ues. StreamFCSS and streamCSS have similar performance
and are better than streamGBH.

Computational Cost. We record runtime and peak memory
of all twelve methods. All methods are implemented in C or
C++ except NCut (Matlab running with 8 threads) and TSP
(Matlab with MEX). As shown in Fig. 5g, GB, TS-PPM, CSS,
FCSS and MeanShift are five fastest methods. As shown in
Fig. 5h, streamFCSS, streamCSS, FCSS and CSS are four
methods that use smallest peak memory.

Three more metrics — mean size variation (MSV), tempo-
ral extent (TEX) and label consistency (LC) — are used in [41].
MSV and TEX measure the size variation and average tem-
poral extent of all supervoxels in a video. Since our work

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 27,2023 at 10:52:42 UTC from IEEE Xplore. Restrictions apply.

3192

@ (even, even)
O (even, odd)
@ (odd, even)

Y @ (odd, odd)

L,

Fig. 6. For easy illustration, we present a superpixel example on a 2D
image. Assume 8-connectivity. For an arbitrary image with arbitrary
ground-truth segmentation, four unrelabeled superpixels are sufficient to
achieve a perfect performance on the BRD metric, i.e., BRD = 0. These
four superpixels are characterized by the parity of the coordinates (z,y)
of image pixels; i.e., the green, yellow, red and blue superpixels consist
of pixels with coordinates (even, even), (even, odd), (odd, even), and
(odd, odd), respectively.

advocates to adapt the size of supervoxels according to video
content density, these two metrics are no longer suitable. LC
is evaluated using ground-truth optical flow. As aforemen-
tioned, optical flow is only a preprocessing tool to video
applications and may introduce extra error into supervoxel
evaluation. In Section 7, we directly evaluate these super-
voxel methods in two video applications.

Comparison Between Unrelabeled and Relabeled Supervoxels.
In the original implementation of the seven methods in [41],
a supervoxel label may be assigned to multiple discon-
nected regions. We call such supervoxels unrelabeled. Unre-
labeled supervoxels may lead to unexpected performance

——GB —+—NCut
—o—GBH —+—TS-PPM

25 —+—streamGBH —&—CSS
—a—SWA —+—FCSS 08
——TsSP —s—streamCSS

20 —=—Meanshift —4—streamFCSS|

W
—o—GBH

—+—TS-PPM
—+—streamGBH ——CSS
|—a—swWA ~A—FCSS
——TSP
|—=—MeanShift —4—streamFCSS|

—=—streamCSS

0 2 o
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Number of supervoxels Number of supervoxels
(a) UE3D (b) SA3D
1.1
—o—CSS
—#—FCSS
1
0.9
o
[
o0
0.8
—e—GB ~#—NCut
0.6 ||—e—GBH —+—TS-PPM M
—+—streamGBH —&—CSS 07
|[—4—SWA ~*-FCSS .
0.5 ——TSP —&—streamCSS

|—=—MeanShift —4—streamFCSS

0 2000 4000 6000 8000 10000 "o 2000 4000 6000 8000 10000
Number of supervoxels

(c) BRD

Number of supervoxels

(d) BRD of FCSS and CSS

—e—aB ——TsP —e—Css
—8—MeanShift —k—FCSS
uwt —e—

Compactness

04l f ——GB —+—NCut
—o—GBH - TS-PPM

——streamGBH —o—CSS

—a—swA ——FCSS

0.2 ——TSP —s—streamCSS
|—=—MeanShift —&—streamFCSS
0
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Number of supervoxels Number of supervoxels
(e) EV (f) Compactness

Fig. 7. Evaluation of relabeled supervoxels on the SegTrack v2 dataset.
Only FCSS achieves good performance on all five metrics of UE3D,
SA3D, BRD, EV, and compactness.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021

0.9 r [streamGBH
[IMeanShift
0.8 ‘ !

F measure

=} o =}

(6] D ~
T

o
N

A

o
w

. . .

@ @ x\o‘ge S\ O o® o o

0\0(ae‘OQ
Object classes

Fig. 8. The average F measures of different supervoxel results on You-
tube-Objects Dataset. The results are plotted per object class and each
object class contains several video sequences. Larger F measure values
mean better foreground propagation results. The results show that
FCSS, TS-PPM and CSS are the top three methods overall in the whole
dataset. FCSS has better results than TS-PPM in six classes (car, horse,
motorbike, cow, boat, dog) and has better results than CSS in nine clas-
ses (except for the train class).

on previous metrics; see Fig. 6 for an (extreme) example.
Then we further evaluate different supervoxel methods by
relabeling supervoxels such that each supervoxel is a simply
connected region and each voxel is assigned to exactly one
supervoxel: we call such supervoxels relabeled. Relabeling
supervoxels only affect the number of supervoxels. It does
not affect the visual appearance and functionality of super-
voxels: if one object/region can be represented by the union
of a subset of unrelabeled supervoxels, it can also be repre-
sented by a subset of relabeled supervoxels. After super-
voxel relabeling, the isolated fragments with less than t
voxels are merged with a randomly chosen neighboring
supervoxel. The performance of twelve supervoxel methods
after relabeling with v =5,10,50,100 are summarized in
Fig. A5 in Appendix, available in the online supplemental
material, and the results with ¢ = 50 are shown in Fig. 7. The
results show that only FCSS, streamFCSS, CSS, streamCSS,
TSP and TS-PPM are insensitive to relabeling. Meanwhile,
only FCSS achieves good performance on all five metrics of
UE3D, SA3D, BRD, EV and compactness.

Comparison With TSP and TS-PPM. FCSS has similar
UE3D, SA3D and EV performance with TSP and TS-PPM.
FCSS has similar BRD performance with TS-PPM and is bet-
ter than TSP. FCSS is much better in compactness than both
TSP and TS-PPM. FCSS and TS-PPM are 5x to 10x faster
than TSP. The peak memory of FCSS is 22x smaller than
TSP and 7x to 15x smaller than TS-PPM. Furthermore, in
Section 7, we present two video applications and show that
FCSS achieves better results than TSP and TS-PPM.

Comparison With CSS. Both FCSS/streamFCSS and CSS/
streamCSS use RCVT on video manifold M. Thanks to the
feature-aware strategy by forcing cell centroids away from
video local boundaries, the FCSS method better fine tunes the
cell boundaries to align with the video local boundaries than
CSS. As shown in Figs. 5d and Al in Appendix, available in
the online supplemental material, FCSS outperforms CSS

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 27,2023 at 10:52:42 UTC from IEEE Xplore. Restrictions apply.

YIETAL.: FEATURE-AWARE UNIFORM TESSELLATIONS ON VIDEO MANIFOLD FOR CONTENT-SENSITIVE SUPERVOXELS

Frame 1

3193

Frame 65

Frame 73

GB (0.7700) GBH (0.8896)

MeanShift (0.8416)

TSP (0.8249)

TS-PPM (0.8773) CSS (0.8975) FCSS (0.9005)

Fig. 9. Foreground propagation results of seven supervoxel methods on one example in Youtube-objects dataset [29]. Three representative frames
are selected. The foreground masks are shown in green. The incorrectly labeled areas are circled in red. The average F measure for each example
video is shown in the bracket below three frames. The value of the F measure ranges in [0,1], and larger values mean better results.

on the metrics of BRD, SA3D and EV, and has similar perfor-
mance with CSS on UE3D. Meanwhile, FCSS is better than
CSS in two novel video applications presented in Section 7.

7 APPLICATIONS

We evaluate the performance of various supervoxels in the
following two video applications. To faithfully compare dif-
ferent supervoxel methods, we use their original settings,
i.e., supervoxels are unrelabeled.

Foreground Propagation in Video. Given the first frame
with manual annotation for the foreground object, a novel
approach is proposed in [14] to propagate the foreground
region through time, with the aid of supervoxels to guide its
estimates towards long-range coherent regions. Youtube-
Objects dataset [29] (126 videos with 10 object classes) with
foreground ground-truth, is used to perform a quantitative
assessment. Seven representative methods (GB, GBH,
streamGBH, MeanShift, TSP, TS-PPM and CSS) and our
FCSS method are compared. NCut is not compared due to
its high computational cost. SWA is not compared since
there are many long videos in this dataset and SWA
requires huge memory. The average F measures of 10 clas-
ses are summarized in Fig. 8. F measure values range in
[0,1] and larger values mean better results. These results
show that FCSS, TS-PPM and CSS are top three methods in
the overall F-measure (i.e., including all object classes).
FCSS has better results than TS-PPM in six classes and has
the same performance in the overall F-measure. FCSS
achieves better results than CSS in nine classes, with an
overall better F-measure. Some qualitative results are illus-
trated in Fig. 9.

Optimal Video Closure by Supervoxel Grouping. Levinshtein
et al. [17] propose a novel foreground object segmentation
method which does not need manual annotation on the
frame. The idea is to detect spatiotemporal closure for sepa-
rating an object from background. A novel framework for
efficiently searching spatiotemporal closure is proposed by
finding subsets of supervoxels such that the contour of
union of these supervoxels has strong boundary support in
the video. The dataset of Stein et al. [35] in which each
sequence has a ground truth segmentation mask, is used to
perform a quantitative assessment. Nine representative
methods (GB, GBH, streamGBH, NCut, MeanShift, SWA,

TSP, TS-PPM and CSS) and our FCSS method are compared.
The average F measures across all sequences are summa-
rized in Fig. 10. Some qualitative results are illustrated in
Fig. 11. These results show that FCSS results achieve the
best spatiotemporal closure performance.

8 CONCLUSION

In this paper, we introduce feature-aware content-sensitive
supervoxels (FCSS) that have three characteristics: (1) they
are regularly-shaped 3D primitive volumes, (2) they are
well aligned with local object/region boundaries in video,
and (3) they are typically smaller and shorter in content-
dense regions (i.e., with high variation of appearance and/
or motion), and larger and longer in content-sparse regions.
We propose a simple yet efficient algorithm to compute
FCSSs by computing a uniform tessellation on the video
manifold M with an elaborate average boundary distance,
such that the cell boundaries of obtained uniform tessella-
tion well align with local video boundaries. Our algorithm
is easily extended to a stream version for handling long vid-
eos. In addition to its easy implementation, our algorithm is
theoretically an (O(1),O(1))-approximation. Experimental
results show that FCSS is the only method that can achieve
good performance in all the metrics (i.e., UE3D, SA3D, BRD
EV, compactness, running time and peak memory) and is
insensitive to supervoxel relabeling. Two video applications

0.75

F measure
o
(o))
(§)]

0.6 [

0.55

Fig. 10. Average F measures in the spatiotemporal closure application.
The results are averaged on Stein et al. [35] dataset. Our FCSS method
achieves the best average F measure among all ten methods.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 27,2023 at 10:52:42 UTC from IEEE Xplore. Restrictions apply.

3194

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021

Video Frame

MeanShift

0.9609
FCSS

TSP TS-PPM

Fig. 11. Spatiotemporal closure results of seven supervoxel methods on three examples in Stein et al. dataset [35]. The optimal closure contours are
shown in red, and the boundaries of supervoxels are shown in green. One representative frame is illustrated for each video. The F measure value for
each spatiotemporal closure is shown below each frame; the range of the F measure values is [0,1], and larger values mean better results.

are

presented, demonstrating that the proposed FCSS

method can simultaneously achieve the best performance
with respect to various metrics.

ACKNOWLEDGMENTS

This work was supported by the Natural Science Founda-
tion of China (61725204, 61521002). Ran Yi and Zipeng Ye
are co-first authors.

REFERENCES

1]

[2]

[3]

[4]

[5]

(6]

(7]

[8]

[9]

[10]

[11]

[12]

N. Ailon, R. Jaiswal, and C. Monteleoni, “Streaming k-means
approximation,” in Proc. 22nd Int. Conf. Neural Inf. Process. Syst.,
2009, pp- 10-18.

D. Arthur and S. Vassilvitskii, “K-means++: The advantages of
careful seeding,” in Proc. 18th Annu. ACM-SIAM Symp. Discrete
Algorithms, 2007, pp. 1027-1035.

G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla, “Segmen-
tation and recognition using structure from motion point clouds,”
in Proc. Eur. Conf. Comput. Vis., 2008, pp. 44-57.

Y. Cai and X. Guo, “Anisotropic superpixel generation based on
mahalanobis distance,” Comput. Graph. Forum, vol. 35, no. 7,
pp- 199-207, 2016.

J. Chang, D. Wei, and J. W. Fisher III, “A video representation
using temporal superpixels,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2013, pp. 2051-2058.

A. Y. Chen and J. J. Corso, “Propagating multi-class pixel labels
throughout video frames,” in Proc. Western New York Image
Process. Workshop, 2010, pp. 14-17.

J.J. Corso, E. Sharon, S. Dube, S. El-Saden, U. Sinha, and A. L. Yuille,
“Efficient multilevel brain tumor segmentation with integrated
Bayesian model classification,” IEEE Trans. Med. Imag., vol. 27, no. 5,
pp- 629-640, May 2008.

Q. Du, V. Faber, and M. Gunzburger, “Centroidal Voronoi tessel-
lations: Applications and algorithms,” SIAM Rev., vol. 41, no. 4,
pp- 637-676,1999.

P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based
image segmentation,” Int. . Comput. Vis., vol. 59, no. 2, pp. 167-181,
2004.

C. Fowlkes, S. Belongie, F. Chung, and J. Malik, “Spectral group-
ing using the Nystrom method,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 26, no. 2, pp. 214225, Feb. 2004.

C. C. Fowlkes, S.]. Belongie, and]. Malik, “Efficient spatiotempo-
ral grouping using the Nystrom method,” in Proc. IEEE Comput.
Soc. Conf. Comput. Vis. Pattern Recognit., 2001, pp. 231-238.

F. Galasso, N. S. Nagaraja, T. J. Cardenas, T. Brox, and B. Schiele, “A
unified video segmentation benchmark: Annotation, metrics and
analysis,” in Proc. IEEE Int. Conf. Comput. Vis., 2013, pp. 3527-3534.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

M. Grundmann, V. Kwatra, M. Han, and 1. A. Essa, “Efficient hier-
archical graph-based video segmentation,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2010, pp. 2141-2148.

S. D. Jain and K. Grauman, “Supervoxel-consistent foreground
propagation in video,” in Proc. 13th Eur. Conf. Comput. Vis., 2014,
pp- 656-671.

Y. Ke, R. Sukthankar, and M. Hebert, “Spatio-temporal shape and
flow correlation for action recognition,” in Proc. IEEE Comput. Soc.
Conf. Comput. Vis. Pattern Recognit., 2007, pp. 1-8.

S. Lee, W. Jang, and C. Kim, “Temporal superpixels based on
proximity-weighted patch matching,” in Proc. IEEE Int. Conf.
Comput. Vis., 2017, pp. 3630-3638.

A. Levinshtein, C. Sminchisescu, and S. J. Dickinson, “Optimal
image and video closure by superpixel grouping,” Int. |. Comput.
Vis., vol. 100, no. 1, pp. 99-119, 2012.

A. Levinshtein, A. Stere, K. N. Kutulakos, D.]. Fleet, S. J. Dickinson,
and K. Siddiqi, “TurboPixels: Fast superpixels using geometric
flows,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 12,
Pp- 2290-2297, Dec. 2009.

C. Li, L. Lin, W. Zuo, S. Yan, and J. Tang, “SOLD: Sub-optimal
low-rank decomposition for efficient video segmentation,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 5519—
5527.

F. Li, T. Kim, A. Humayun, D. Tsai, and]J. M. Rehg, “Video seg-
mentation by tracking many figure-ground segments,” in Proc.
IEEE Int. Conf. Comput. Vis., 2013, pp. 2192-2199.

Y. Liang, J. Shen, X. Dong, H. Sun, and X. Li, “Video supervoxels
using partially absorbing random walks,” IEEE Trans. Circuits
Syst. Video Technol., vol. 26, no. 5, pp. 928-938, May 2016.

M.-Y. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa, “Entropy
rate superpixel segmentation,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2011, pp. 2097-2104.

Y.-J. Liu, C. Yu, M. Yu, and Y. He, “Manifold SLIC: A fast method
to compute content-sensitive superpixels,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2016, pp. 651-659.

Y.-J. Liu, M. Yu, B.-]. Li, and Y. He, “Intrinsic manifold SLIC: A
simple and efficient method for computing content-sensitive
superpixels,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 3,
pp. 653-666, Mar. 2018.

J. Lu, R. Xu, and J. J. Corso, “Human action segmentation with
hierarchical supervoxel consistency,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2015, pp. 3762-3771.

A. P. Moore, S. Prince, J. Warrell, U. Mohammed, and G. Jones,
“Superpixel lattices,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit., 2008, pp. 1-8.

D. Oneata, J. Revaud, J. Verbeek, and C. Schmid, “Spatio-temporal
object detection proposals,” in Proc. 13th Eur. Conf. Comput. Vis.,
2014, pp. 737-752.

S. Paris and F. Durand, “A topological approach to hierarchical
segmentation using mean shift,” in Proc. IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recognit., 2007, pp. 1-8.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 27,2023 at 10:52:42 UTC from IEEE Xplore. Restrictions apply.

YIETAL.: FEATURE-AWARE UNIFORM TESSELLATIONS ON VIDEO MANIFOLD FOR CONTENT-SENSITIVE SUPERVOXELS 3195

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

A. Prest, C. Leistner,]. Civera, C. Schmid, and V. Ferrari, “Learning
object class detectors from weakly annotated video,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2012, pp. 3282-3289.

M. Reso, J. Jachalsky, B. Rosenhahn, and]. Ostermann,
“Temporally consistent superpixels,” in Proc. IEEE Int. Conf.
Comput. Vis., 2013, pp. 385-392.

M. Reso, J. Jachalsky, B. Rosenhahn, and J. Ostermann, “Occlusion-
aware method for temporally consistent superpixels,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 41, no. 6, pp. 1441-1454, Jun. 2019.

E. Sharon, A. Brandt, and R. Basri, “Fast multiscale image
segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2000, pp. 1070-1077.

E. Sharon, M. Galun, D. Sharon, R. Basri, and A. Brandt,
“Hierarchy and adaptivity in segmenting visual scenes,” Nature,
vol. 442, no. 7104, pp. 810-813, 2006.

J. Shi and J. Malik, “Normalized cuts and image segmentation,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888-905,
Aug. 2000.

A. N. Stein, D. Hoiem, and M. Hebert, “Learning to find object
boundaries using motion cues,” in Proc. IEEE 11th Int. Conf.
Comput. Vis., 2007, pp. 1-8.

D. Sun, S. Roth, and M. J. Black, “A quantitative analysis of cur-
rent practices in optical flow estimation and the principles behind
them,” Int.]. Comput. Vis., vol. 106, no. 2, pp. 115-137, 2014.

P. Sundberg, T. Brox, M. Maire, P. Arbeldez, and J. Malik,
“Occlusion boundary detection and figure/ground assignment
from optical flow,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2011, pp. 2233-2240.

O. Veksler, Y. Boykov, and P. Mehrani, “Superpixels and super-
voxels in an energy optimization framework,” in Proc. Eur. Conf.
Comput. Vis., 2010, pp. 211-224.

P.Wang, G. Zeng, R. Gan,]. Wang, and H. Zha, “Structure-sensitive
superpixels via geodesic distance,” Int. |. Comput. Vis., vol. 103,
no. 1, pp. 1-21, 2013.

D. Wei, “A constant-factor bi-criteria approximation guarantee for
k-means++,” in Proc. Annu. Conf. Neural Inf. Process. Syst., 2016,
pp. 604-612.

C. Xu and J. J. Corso, “LIBSVX: A supervoxel library and bench-
mark for early video processing,” Int. |. Comput. Vis., vol. 119, no. 3,
pp- 272-290, 2016.

C. Xu, C. Xiong, and J. J. Corso, “Streaming hierarchical video
segmentation,” in Proc. 12th Eur. Conf. Comput. Vis., 2012, pp. 626-639.
R.Yi, Y. Liu, and Y. Lai, “Content-sensitive supervoxels via uni-
form tessellations on video manifolds,” in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit., 2018, pp. 646-655.

R.Yi, Y. Liu, and Y. Lai, “Evaluation on the compactness of super-
voxels,” in Proc. IEEE Int. Conf. Image Process., 2018, pp. 2212-2216.
C.-P. Yu, H. Le, G. Zelinsky, and D. Samaras, “Efficient video seg-
mentation using parametric graph partitioning,” in Proc. IEEE Int.
Conf. Comput. Vis., 2015, pp. 3155-3163.

Ran Yi received the BEng degree from Tsinghua
University, Beijing, China, in 2016. She is currently
working toward the PhD degree in the Department
of Computer Science and Technology, Tsinghua
University. Her research interests include com-
puter vision, machine learning, and computer
graphics.

Zipeng Ye received the BEng degree from Tsing-
hua University, Beijing, China, in 2017. He is
currently working toward the PhD degree in the
Department of Computer Science and Technol-
ogy, Tsinghua University. His research interests
include computational geometry and computer
vision.

Wang Zhao received the BEng degree from
Tsinghua University, Beijing, China, in 2019. He is
currently working toward the PhD degree in
the Department of Computer Science and
Technology, Tsinghua University. His research
interest focuses on 3D computer vision.

Minjing Yu received the BE degree from Wuhan
University, Wuhan, China, in 2014, and the PhD
degree from Tsinghua University, Beijing, China,
in 2019. She is currently an assistant professor
with the College of Intelligence and Computing,
Tianjin University, China. Her research interests
include computer vision, cognitive computation,
and computer graphics.

Yu-Kun Lai received the BS and PhD degrees
in computer science from Tsinghua University,
Beijing, China, in 2003 and 2008, respectively. He
a reader with the School of Computer Science
and Informatics, Cardiff University, UK. His
research interests include computer vision,
computer graphics, and geometric computing. For
more information, please visit https://users.cs.cf.
ac.uk/Yukun.Lai/

Yong-Jin Liu (Senior Member, IEEE) received the
BEng degree from Tianjin University, Tianjin, China,
in 1998, and the PhD degree from the Hong Kong
University of Science and Technology, Hong Kong,
China, in 2004. He is currently a professor with the
Department of Computer Science and Technology,
Tsinghua University, China. His research interests
include computational geometry, computer vision,
and computer graphics. He is a member of the
ACM. For more information, please visit http://cg.
cs.tsinghua.edu.cn/people/~Yongjin/Yongjin.htm

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 27,2023 at 10:52:42 UTC from IEEE Xplore. Restrictions apply.

https://users.cs.cf.ac.uk/Yukun.Lai/
https://users.cs.cf.ac.uk/Yukun.Lai/
http://cg.cs.tsinghua.edu.cn/people/~Yongjin/Yongjin.htm
http://cg.cs.tsinghua.edu.cn/people/~Yongjin/Yongjin.htm
http://cg.cs.tsinghua.edu.cn/people/~Yongjin/Yongjin.htm

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

